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For a Mars Expedition, aerobrakes can play
a vital role in several major mission
events, including aerocapture to achieve
orbit and descent to the planetary surface
both at Mars and upon return to Earth. The
feasibility of aerobrake designs will depend
upon materials and structures technologies
because they will serve as a key factor in
determining:

• Aerobrake mass and mass fraction

The extent to which aerobrakes can
survive the thermal environment. This
is especially important for reusable
aerobrakes. With the cancellation of the

Aeroassist Flight Experiment, the effort
to validate aerobrake designs has
focused on laboratory test and analysis.

The feasibility of assembling and/or
deploying large aerobrakes. On-orbit
assembly is a critical issue for all

spacecraft intended for Mars
exploration missions. Current studies
are addressing options related to in-
space assembly and construction.

* Configuration lift-to-drag (L/D) ratio.
High L/D increases convective heating,
whereas low L/D emphasizes radiative
heating. In general, the lowest L/D
design that can satisfy mission require-
ments is preferred.

Most aerobraking environments are
different than those experienced by previous
space programs. An aeroassisted Earth
entry from the Moon would be similar to the
Apollo missions, but significant
differences are involved in aerocapture for
Earth orbit. The velocities of vehicles

returning from Mars could be as high as 15
km/sec. This compares to 8 km/sec for the
Space Shuttle and about 11 kmJsec for return
from the Moon. The use of aerobraking
technology in the Martian atmosphere
would go far beyond our past experience and
require mission planners to accommodate
highly variable entry and atmospheric
conditions including possible dust storms.
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Aerobraking

• Aerobraking Benefits

• Aerobraking Modes & Applications

• Structures & Materials Issues

• Aerobrake Status

• Summary
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AEROBRAKING MODES

Aerocapture
( from hyperbolic trajectory

Direct Entry
(from hyperbolic trajectory
or high orbit)
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Mars Propulsion Options
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Aerobraklng is required for 1/3 to 1/2 of all major mission events i
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Nuclear Thermal Propulsion Vehicle Concept

Cryogenic Aerobraking Vehicle Concept

7.4m dla. x 15m w/shielding

50=11
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Nuclear/Aerobraking Hybrid Vehicle Concept

Mars
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Structures and Materials Issues

• Configuration L/D

• Mass fraction

• Thermal environment

• Assembly/deployment
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The L/D Issue

Issue High L/D Low L/D
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Strategy: Find the lowest UD which satisfies mission requirements, i
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Aerobraking Environments

Lunar Missions:

• Extension of Apollo flight experience
Entry velocity conditions the same
Repeatable for various opportunities

• Significant differences in flow conditions between:
Direct entry (like Apollo) and aerocaptura

Mars Missions:

• Extend flight environments significantly beyond our past experience for
both Mars aerocapture and Earth aerocapture/direct entry

• Highly variable entry velocity conditions with:
Opportunity year
Type of mlssion trajectory

• Highly variable Mars atmosphere
Atmospheric density
Dust storms
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EARTH ENTRY VELOCITY ENVELOPES
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Aerobrake Heating Environments
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TPS Dust Erosion

• Possible Mars dust storm during aerocapture maneuver

• TPS erosion modeled for worst case dust storm,
high aerocapture velocity

• Surface erosion calculated as about 10 mm
in stagnation region for ablator TPS

• Assessment: A manageable problem
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Aerobrake Deployment/Assembly

Issue:

Aerobrake

Sizes, dla

Lunar, 15m,

Mars, 33m

Aerobrakes are too large for conventional intact launch

and require precision assembly. What is the impact of
Aerobrake deployment/assembly requirements?

Answer:

• Current studies are examining:

- Designs for simplified assembly

- Alternatives to assembly

Intact launch options

Deployable, space rigldlzed

Paytoad Sizes, dia

STS, 4.5m

HLLV (70t), 7.6m

HLLV (250 t), 12.8 m

On-orbit assembly is a critical issue for Aerobrakes

I as well as all Exploration missions. Current studies

_ddressin_ a variety of options.

• Precision assembly Is not unique to Aerobrake

- Propellant feedline connects/disconnects

are common to.all configurations

• On-orbit deployment/assembly and precision

assembly is required regardless of

Aerobrake utilization

i

Aerobraking status

• Synthesis Report:
Nuclear Thermal Propulsion for all missions
Aerobrake design issues elevated to showstoppers

• AFE Cancellation Impact
Shift validation emphasis to ground test

• Architecture Assessments
Baseline NTP but trade alternatives

• Technology Program - J .....
Multidiscipline, based on flight demonstrated technologies
High priority in transportation thrust
Continuing at reduced level

116



Aerobraking Summary

• Aerobraking provides:
Essential capabilities for Mars entry and return to Earth
Potentially enhancing capabilities for Mars orbit capture

• There are no Aerobraking showstoppers

• There are significant structure and materials challenges in
Performance

Low weight
Thermal protection materials

Operations
Assembly/deployment
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